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IAN COLEY

The questions for this solution guide can be found here.

Solution 1. (A) Don’t get thrown by the e in the exponent; it’s just a number:∫
eex dx =

1

e
eex + C

and since 1/e = e−1, combining terms gives eex−1 + C.

Solution 2. (E) Remembering one of the most useful Taylor series: for all x ∈ R,
∞∑
n=0

xn

n!
= ex

Recalling also that 3 log 2 = log(23) = log 8, we get

∞∑
n=0

(3 log 2)n

n!
= e3 log 2 = elog 8 = 8

Solution 3. (D) Since A = π · r2,

π · (r · 1.4)2 = π · 1.96 · r2 = 1.96A

So it’s a 96% increase. Nothing complicated here.

Solution 4. (A) Using implicit differentiation,

d

dx
(x+ y4 = 10) =⇒ 1 + 4y3 · dy

dx
= 0

Rearranging the equation, we obtain

dy

dx
=

−1

4y3

Solution 5. (C) Recall the most general format of the fundamental theorem of calculus:

d

dx

∫ b(x)

a(x)

f(t) dt = b′(x) · f(b(x))− a′(x) · f(a(x))

So in this case, with a constant as the first limit of integration, we just need to substitute in
the top term and multiply by its derivative.

h′(x) =
d

dx

∫ x2

0

g(t) dt =
d

dx
(x2) · g(x2) = 2xg(x2)
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Solution 6. (D) You can brute for this by picking certain points, e.g., does f(f(0)) = 0
by visual inspection? But taking a step back, f(x) = 1/x) is a perfectly good example of
f(f(x)) = x and we can see that function sitting in answer (D).
Another observation: since f(x) = f−1(x), from a graphical perspective y = f(x) must

be symmetric over the line y = x, since this is the usual trick to graph the inverse function.
That also leaves only (D).

Solution 7. (B) We see a lot of e in the answer, so that might remind us that

lim
n→∞

(
1 +

t

n

)n

= et

Well that isn’t quite what we have here, but we can use the substitution x = 1/n to obtain

lim
x→0

(
1 +

x

a

)b/x

= lim
n→∞

(
1 +

1

a · n

)b·n

= lim
n→∞

((
1 +

1/a

n

)n)b

=

(
lim
n→∞

(
1 +

1/a

n

)n)b

where in the last equation we use the fact that tb is a continuous function to pull it outside
of the limit. The limit evaluates to e1/a and thus we obtain eb/a.

Solution 8. (B) This should be a familiar problem type by now; we need to compute the
limit if it exists. “Plugging in” x = 1 to f(x) gives 0/0, so L’Hôpital’s rule applies:

lim
x→1

log x

x2 − 1
= lim

x→1

1/x

2x
= lim

x→1

1

2x2
=

1

2

which completes the problem.

Solution 9. (C) Let A denote the event “at least one lightbulb is defective” and let D be
the number of defective bulbs. Then P (A) = P (D = 1) + P (D = 2), the sum of two things,
when we could compute P (¬A) = P (D = 0) that zero lightbulbs are defective. All this is
to say that solving for “not A” is slightly faster.

What is the probably that neither bulb is defective? The odds for the first bulb is 7/10
and the second is 6/9. Multiplication gives us 7/15, but remember that was P (¬A). That
implies P (A) = 1− P (¬A) = 8/15.

Solution 10. (B) For this and similar questions, we want to relate the power series we see to
one we’ve memorized. The one that comes to mind for me is the geometric series power series,
which has the same radius of convergence that we’re addressing in the problem, namely

1

1− x
=

∞∑
n=0

xn, |x| < 1

Recall that we can take the derivative of convergent power series without changing the
radius, which gives us

d

dx

1

1− x
=

1

(1− x)2
=

∞∑
n=1

n · xn−1 =
∞∑
n=0

(n+ 1)xn

Since an = n+ 1, the first three terms are 1, 2, 3.

Solution 11. (E) The function f(x) is a parabola, so it would be useful to know where its
vertex is for this question. Thinking about a general g(x) = (x− h)2 + k with vertex (h, k),
its range is given by y ≥ k (since (x−h)2 is nonnegative) and it admits an inverse so long as
we restrict our domain to x ≤ h or x ≥ h, i.e., it cannot transgress the x value of the vertex.
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So where’s our vertex? The implication from the problem is that k = −8, but let’s recall
how to figure this out. We need to complete the square, which goes by the following general
method:

x2 + bx+ c = x2 + bx+
b2

4
− b2

4
+ c =

(
x+

b

2

)2

+

(
c− b2

4

)
The first equality just adds and subtracts the same quantity so that when we FOIL out
(x− b/2)2 we see all the necessary terms. In our case,

x2 + 6x+ 1 = x2 + 6x+ 9− 9 + 1 = (x+ 3)2 − 8

For the current problem, we indeed have k = −8 and h = −3 as the problem statement
suggested, but it was a good check. This makes f(x) both injective and surjective, so it
admits an inverse given by (C), (D), or (E). The easiest way to check this would be by
plugging in the vertex value we worked so hard to obtain. We expect f−1(−8) = −3.

For (C), we get 6−
√
36− 8 = 6−

√
24 is not going to be an integer. The same problem

will apply to (D). This makes (E) the only remaining answer, and checking we do get the
expected result.

You could get to (E) more quickly just by plugging in some values and seeing that it
works, but without the due diligence that (A) and (B) are false it would be risky.

Solution 12. (C) Let’s think about the prime factorization of n. Recall from either your
abstract algebra class or number theory that if p is a prime number such that p | n5 (or any
power of n), then p | n as well; this is an if and only if statement. Since n5 only has three
prime factors, namely 2, p, q, we can write

n = 2a · pb · qc, a, b, c > 0

This relies on remembering that 64 = 26, which will be relevant again shortly.
Now, the statement of the problem is that p3 and 64q11 both divide n5. These numbers

are coprime (since 2 < p < q) so their least common multiple is just their product. Thinking
about this statement in terms of prime factorizations,

64p3q11 = 26 · p3 · q11 | n5 = 25a · p5b · q5c =⇒ 6 ≤ 5a and 3 ≤ b and 11 ≤ 5c

as “divisible” is just a fancy way of saying “has more prime factors than”. Because a, b, c
are positive integers, this implies that a = 2, b = 1, and c = 3 is the minimal choice, which
gives (C).

Solution 13. (C) Thinking backwards, suppose that G is a complete graph (i.e., every pair
of vertices has exactly one edge between them) on N vertices. We know that every vertex
is connected to every other, so each vertex has N − 1 edges giving N · (N − 1) edges in all.

But this double-counts each edge, so we have to divide by 2. Put another way, G has
(N

2

)
(“N choose 2”) edges. Hence

N · (N − 1)

2
= 190 =⇒ N · (N − 1) = 380

and rather than solve this quadratic polynomial, we can look at the options and notice
20 · 19 = 380. That makes N = 20.

Solution 14. (C) We can address (D) and (E) pretty quickly. Concavity is determined by
the second derivative, so computing that we have f ′′(x) = 2x−1. On the interval (0, 2), this
function changes signs so are neither concave up nor concave down the whole time.
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(C) would be true if f ′(x) > 0 on (0, 2), which we can sort out quickly as well. We can
tell that f ′(1) = 1− 1 + 1 = 1 > 0, so we just need to check for roots of this polynomial in
(0, 2). Using the quadratic formula, we compute the roots to be

x =
1±

√
1− 4

2
=

1± i
√
3

2

which are imaginary, so f ′(x) cannot change signs. Thus f ′(x) > 0 and (C) is confirmed
true.

To address (A) and (B), there doesn’t seem to be any reason these should be true. If we
take an antiderivative of f ′(x), we obtain f(x) = x3/3 − x2/2 + x + C. Note that f(x) is
continuous on [0, 2] the closed interval, so we can test the functional equation f(x) = f(2−x)
at the endpoints. For us, this means that f(0) = C must equal f(2) = 8/3−4/2+2+C ̸= C
which is impossible for every C ∈ R. The same argument shows that (B) cannot be true for
all C ∈ R either.

Solution 15. (A) To take a direct approach, set y = b/x for the second equation and
substitute into the first:

x2 + (b/x)2 = a =⇒ x4 + b2 = ax2 =⇒ x4 − ax2 + b2 = 0

Using the quadratic equation for t = x2, we can solve

t =
a±

√
a2 − 4b2

2

For t to have a solution, we need the discriminant a2 − 4b2 ≥ 0. Rearranging and taking
square roots, we have a ≥ 2b. We know that there’s no ± introduced since a, b > 0.

But is this sufficient? We know that x = ±
√
t are the possible solutions for the original

problem we’re trying to solve, so we need to make sure one of these options for t is guaranteed
to be positive. Luckily this is so: since a > 0, a+

√
a2 − 4b2 > 0 as long as we don’t get an

imaginary term, which we have ruled out. This makes the answer (A).
As a faster alternative, we can consider the graphical interpretation. We’re looking for

conditions such that a circle of radius
√
a (the first equation) intersects with a rectangular

hyperbola (the second). The nearest points of the hyperbola to (0, 0) are (
√
b,
√
b) and

(−
√
b,−

√
b), and these points are at a distance of√

(
√
b)2 + (

√
b)2 =

√
2 ·

√
b

from the origin. Since a circle is all points equidistant from the origin, we need the radius
of the circle to be this distance or greater for there to be any points of intersection. Thus√
a ≥

√
2 ·

√
b, giving us the same answer when squaring both sides.

Solution 16. (D) You might just have the answer to this question in your back pocket, but
let’s go through the steps to check every statement. By definition, for a subset D ⊂ X, we
know that

f(D) := {y ∈ Y : ∃d ∈ D such that f(d) = y}
Starting with Statement III, it’s true essentially by definition. Since every c ∈ C also

satisfies c ∈ B, f(c) ∈ f(B) too. This reduces the answer choices to (D) or (E), and the
correct answer hinges on testing Statement II only.

Using III, as A ∩ B ⊂ A, we conclude f(A ∩ B) ⊂ f(A) and similarly f(A ∩ B) ⊂ f(B).
We immediately conclude f(A ∩ B) ⊂ f(A) ∩ f(B). But the converse has no reason to
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be true; consider f(x) = x2 defined on R → R. Let A = [0, 1] and B = [−1, 0]. Then
f(A ∩ B) = f({0}) = {0}. But f(A) = f(B) = [0, 1], so the inclusion we proved above is
strict. The general phenomenon we are seeing here is that when f is not injective, it can
be the case that f(a) = f(b) = y for a ∈ A \ B and b ∈ B \ A. This gives a candidate
y ∈ f(A) ∩ f(B) that does not come from an x ∈ A ∩ B. This lets us conclude the answer
is (D).

To double-check Statement I: we know that A ⊂ A ∪ B and B ⊂ A ∪ B, so that by III,
f(A) ⊂ f(A∪B) and f(B) ⊂ f(A∪B) and thus f(A)∪ f(B) ⊂ f(A∪B). But the reverse
inclusion is also true; spupose that y ∈ f(A ∪ B). Then y = f(x) for some x ∈ A ∪ B, by
definition that means x ∈ A or x ∈ B so f(x) is in f(A) or f(B).

Solution 17. (B) These facts should be in your pocket from your real analysis class, or from
a more advanced calculus class. We can use this opportunity to review sequences but this
should be a 5-second problem.

By definition, lim
n→∞

an = a if for every ε > 0, there exists N ∈ N such that |an − a| < ε

for all n > N . In particular, this means that the sequence {an} has to be bounded, as
the choice ε = 1 (for example) shows that infinitely many elements of {an} must be within
(L− 1, L+ 1). By converse, an unbounded sequence can’t possibly converse, which is (A).

We can get (E) pretty quickly as well; rewriting the righthand side of this equivalence tells
us that for every ε > 0, there exists N ∈ N such that

||an − a| − 0| < ε whenever n > N

But that’s just the same thing as |an − a| < ε, so (E) must be true.
(C) is the definition of a continuous function, at least from the perspective of real analysis

as opposed to Calc I, and we won’t reiterate the proof here. (D) is the definition of a sequence
being Cauchy, and we know in R a sequence is convergent if and only if it’s Cauchy. This
does require {an} to be a sequence of real numbers though, so it’s important to read the
problem statement carefully.

Thus we conclude the answer is (B), although we should’ve known this all along. There’s no
reason a bounded sequence needs to converge, and we can use the counterexample an = (−1)n

which bounces between −1 and 1 indefinitely. These numbers are not getting any closer
together, so the sequence is not Cauchy and therefore not convergent (which is true regardless
of metric space).

Solution 18. (B) Since Statement II appears in most answers, let’s tackle that one first. As
we’re looking at the graph of g′(x), we know that g(x) has extrema at g′(x) = 0, which occur
at x = 2 and x = 5, so that’s a good start. The First Derivative Test tells us that if g′(x)
goes from positive to negative, we have a local maximum and if g′(x) goes from negative to
positive, we have a local minimum. That’s exactly what’s occurring on the graph and what
Statement II says, so that one is true.

We can now look at Statement I, which seems to be making the same conclusions about
a different set of points. This is dead wrong; these statements are true about g′(x) but not
g(x).

Finally, with Statement III, we have to do some integration. The way we can compare
g(2) with g(5) via g′(x) comes from the following:∫ 5

2

g′(x) dx = g(5)− g(2)
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So how do we figure out the lefthand side? Since we have the graph, we know this integral
is the area under the curve on [2, 5]. Looking at that region, we see a triangle that’s entirely
contained below the x-axis, so it’ll have negative area. This means that g(5)− g(2) < 0 (it
looks like it’s about −3 but the specifics don’t matter) and they cannot be equal.
Put another way: Rolle’s theorem (the specific case of the Mean Value Theorem) tells us

that if g(2) = g(5), then there must be c ∈ (2, 5) such that g′(c) = 0, which we see doesn’t
happen. Note that II being true doesn’t rule out III being true, but it does given that there
are no local extrema in between x = 2 and x = 5.

Solution 19. (C) This is a kind of optimization question, and I’ll treat it as such. The dis-

tance between the graph of y =
√
x+ 3 and the origin is

√
x2 + y2, which upon substitution

becomes a single-variable function of x. Minimizing this distance is a question of finding
the extrema of that function, but it’s much easier to consider minimizing the square of the
distance.

Specifically, consider d(x) = x2 + (
√
x+ 3)2 = x2 + x+ 3. Then if d(x) is at a minimum,

so is its square root since d(x) is always positive and
√
x is a strictly increasing function. To

find the minima of d(x), we look at d′(x) = 2x+1. There’s one root, namely x = −1/2, and
indeed d′(x) changes from negative to positive at x = −1/2 which means we have a local
minimum. It’s also “obvious” that this is a minimum rather than a maximum, as it’s quite
easy to get far away from the origin on the graph of any function. Picking the only answer
with x = −1/2 completes the problem.

Solution 20. (D) There are a few things I would expect out of this answer. First, I expect
to see both f ′′ and g′′ represented. I would also only expect to see f ′ and f ′′ composed with
g; no f ′ ◦g′ here, that’s not how the chain rule works. So these heuristics rule out everything
but (D), which is the right answer.

But there’s no way to do be sure without crunching the numbers, in my opinion. Given
that the first derivative of the composite function is f ′(g(x)) · g′(x),

d

dx
f ′(g(x) · g′(x) = f ′(g(x)) · g′′(x) + g′(x) · f ′′(g(x)) · g′(x)

Looking over the answers, that makes it (D).

Solution 21. (C) The usual trick here is finding a linear combination of these equations
that solves the problem, rather than solving for the actual solutions of x, y. That is, we want
to find integers a, b ∈ Z such that 3a+ b = 5 (mod 13) (the x-coefficients) and 2a+ 7b = 3
(mod 13) (the y-coefficient).

My first guess is a = 1 and b = 2 for the first equation, and in the second equation we
have 2 + 14 = 16 ≡ 3 as required. Lucky? Maybe so, but these problems are usually set up
so that the correct solution isn’t too hard to find. Therefore we conclude

1 · (3x+ 2y = 5) + 2 · (x+ 7y = 1) =⇒ 5x+ 3x = 5 + 2 = 7

Solution 22. (D) After drawing out the picture (see below1), we see two similar triangles
emerge. These are (note the order) △ACB and △APQ; the angles ∠ACB = ∠APQ are
equal by construction, and ∠CAB = ∠PAQ because points P,Q lie on the legs of the
original triangle.

1Thank you GeoGebra for the graphical assistance!
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We’re looking for the length of PQ, which corresponds to CB = 12 in the original triangle.
The other leg we know is that AP = 4 and its corresponding leg AC = 8. Therefore
PQ = 12/2 = 6.

Solution 23. (E) This question looks a lot more complicated than it is. Recall that the
system is consistent if it admits at least one solution (xi) ∈ R4. But we can see that
x1 = a, x2 = b, x3 = c, x4 = 0 is always a solution; there are more variables than equations
here, so we’ll always be able to find (in fact) infinitely many solutions for any choice of
(a, b, c) ∈ R3. This makes the answer (E).

Solution 24. (B) A good first determination would be if the null space is 2-dimensional
or 1-dimensional, which we can get at by row-reducing the matrix to determine its rank.
We see that the bottom row is a multiple of the middle row, and the first two rows are
linearly independent, so we’ve got a rank 2 matrix and thus expect a rank 1 null space by
the rank-nullity theorem.

At this point, we can just take (A) and (B) and determine which is correct by doing matrix
multiplication.  1 3 2

2 1 −1
−4 −2 −2

1
3
1

 =

1 + 9− 2
...
...


and we can immediately stop here, since that number isn’t zero. That makes (B) the answer.

Solution 25. (D) Let’s go one constant at a time. The amplitude A is pretty clearly 3
since that’s the maximum height of the curve; the only other option is −3 which is ruled out
because the constants are assumed non-negative. We don’t actually need this for the answer,
but we have to notice that the graph being “flipped over” compared to cos(x) cannot be due
to the amplitude, but has to be a phase shift.

We can look next at the frequency ω. We know that the period T of a trigonometric
function is given by T = 2π/ω. By looking at the graph, we see the period is T = π so
ω = 2. At this point, we can solve for φ via guess and check, i.e.,

f(x) = 3 cos(2x− φ), f(0) = 3 cos(−φ) = −3 =⇒ cos(−φ) = −1

This means that −φ = n · π for some n ∈ Z. That makes (D) the only valid answer.
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If you wanted to go all the way to computing the phase shift, this problem is actu-
ally tricking us slightly. The standard equation for a trigonometric function should read
A cos(ω(x − θ)), using θ instead of φ. Since A cos(ωx) starts at its maximum value (when
A > 0), we see that we have a shift of π/2 to the right on the graph, so setting θ = π/2
yields φ = ωθ = π as predicted.

Solution 26. (C) A classic example of integral = area under the curve for us. The first
expression in the “max” is the top half of a circle of radius 2 and the second expression is
just a straight line. As we start to draw the graph out, we see that our first intersection
point is (−2, 0), where the semicircle is on top, and the second point of intersection is (0, 2)
where the line starts to dominate.

Thus the area under the curve is a quarter of the circle of radius 2 plus a trapezoidal
area with width 2, height 2 on the left, and height 4 on the right. This explains why the
answers all involve a π term and a non-π term. The quarter circle gives us 4π/4 = π and
the trapezoid gives us 2 · (2 + 4)/2 = 6, yielding (C).

Solution 27. (A) When you negate an AND statement, you get an OR statement. So
¬(Q AND R) translates to ¬Q OR ¬R. The negation of an “if” standment isn’t going to be
an if statement anymore; it’s going to just be the logical propositions. So to negate “if P is
true”, we’ll still have P is true, but the conclusion will be negated. That makes the answer
(A); P is true, but it is not implied that Q is true and R is true; one of them is false.
To be honest, I had (E) written down for the first draft and was confused why it wasn’t

correct. But the negation of a conditional is just a statement of facts to the contrary.2

Solution 28. (A) We might recognise this first integral as (nearly) the defining PDF for a
normal distribution. That’s more of a fun fact than useful for the solution to this problem;
the super relevant fun fact is that this is not an integral that can be computed by elementary
means, i.e., there’s no antiderivative function made up of the “usual” functions of everyday
life. The π might make you suspicious of how to actually get this answer; this actually can
be solved via multivariable calculus and polar coordinates3.

But what we do have here is an elementary integral. We can’t u-substitute, as u = x2

doesn’t make our life better when we have to cope with du = 2x dx, but we can integrate by

2See, e.g., https://users.math.utoronto.ca/preparing-for-calculus/3 logic/we 3 negation.html
3See, e.g., https://math.stackexchange.com/questions/154968/is-there-really-no-way-to-integrate-e-x2
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parts. So it must be integration by parts, but u = x2 isn’t going to win us any prizes there
either (and I got tricked into trying that while writing this solution).

Instead, set u = x and dv = x · e−x2
dx, splitting that x2 term in half. Then du = dx and

dv is now integrable using a substitution w = x2, dw = 2x dx:∫
x · e−x2

dx =

∫
1

2
e−w dw = −e−w

2
=

−e−x2

2

So in total, our integration by parts becomes∫ ∞

0

x2e−x2

dx = x · −e−x2

2

∣∣∣∞
0
−
∫ ∞

0

−e−x2

2
dx

Now we have some number crunching to do. The middle term we just evaluate: plugging
in x = 0 gives zero, and on the other end

lim
x→∞

x · −e−x2

2
= lim

x→∞

−x

2ex2 = 0

as the denominator is growing way faster than the numerator; use L’Hôpital’s rule if you
don’t believe me. The other term is addressed by the hint at the beginning: since e−x2

is
symmetric around the origin, we can conclude∫ ∞

−∞
e−x2

= 2 ·
∫ ∞

0

e−x2

=
√
π =⇒

∫ ∞

0

e−x2

2
dx =

√
π

4

This is definitely a problem I’d skip and come back to.

Solution 29. (B) The function f(x) is increasing when f ′(x) > 0. By the Fundamental
Theorem of Calculus, f ′(x) = (cos23(x))(2+ sin23(x)). As sin(x) only takes values in [−1, 1],
so does sin23(x); therefore the second term is always positive. The first term is positive so
long as cos(x) is positive, which happens on (−π/2, π/2) and all 2π-shifts of that. This
makes the answer (B).

Solution 30. (C) Let’s start by ruling out things we know are wrong. Remember that
r(t) = (cos(t), sin(t)) would give us the graph of a circle. It seems likely that the graph
won’t still be circle given that we’ve messed with it, but it should be some kind of warped
circle. That points me to (C), which will turn out to be the right answer.

(A) and (D) don’t seem very correct because they’ve lost all their curviness. To completely
validate that: how do we get the point (1, 1)? Well cos3(t) = 1 if and only if cos(t) = 1, and
in that case sin(t) = 0 so (D) is impossible. This also rules out (E).

For (A), the listed points are all okay, but how would we get the midpoint (1/2, 1/2) in
the first quadrant? If cos3(t) = 1/2, then cos(t) = 1/ 3

√
2 which makes it very difficult for

sin(t) = 1/ 3
√
2 too. The Pythagorean identify sin2(t)+cos2(t) = 1 is our friend here; plugging

in 1/ 3
√
2 in both spots will not work. The same reasoning shows that the graph cannot still

be a circle; sin6(t) + cos6(t) has no reason to always equal 1. That rules out (B) and we can
be done.

Solution 31. (B) A cube numbered 1-6 on its faces with equal likelihood of any upon rolling
is better known as a die, but points to ETS for making this problem less Western-centric
and describing the situation in great detail.

If at least 2 of our cubes need to be showing the same number, then our options are 2,
3, or 4 cubes being equal. Conversely, we can solve for the situation where all cubes are
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different; like we did in Problem 9, we compute the complementary probability and take 1
minus that number.

Imagine we roll the cubes in sequence. The first cube can show anything; the second cube
has 5 options, the third 4, and the last one 3. This gives us a probability of

1 · 5
6
· 4
6
· 3
6
=

60

216
=

5

18

Its complement is answer (B).

Solution 32. (A) The red flag for me is the word “positive” in the first answer. We know
that the product of two positive numbers is positive only under non-complex circumstances,
and we’re explicitly working in the complex numbers. Indeed, in the first set we know
i ∈ {a+ bi : 0 < a, b ∈ Q} but i2 = −1 is not. That solves the problem.
But let’s characterize our other sets here for completeness. (B) is almost all of C except

for a2 + b2 = 0, which only happens at 0 ∈ C; that is, (B) is C× the multiplicative group of
the complex numbers (which is, indeed, a group).

(C) doesn’t have a lot of options. We can completely characterize the entries: {1,−1, i,−i}.
This is isomorphic to the cyclic group on 4 elements, i.e., the group of fourth roots of unity.

(D) and (E) both have entries that have to satisfy the Pythagorean identity, so they form
the unit circle in the complex plane, although (D) is only the rational points of that circle.
These are both fine groups; specifically, we know that if a+ bi, c+ di are two elements, then
we have

|(a+ bi)(c+ di)|2 = |a+ bi|2 · |c+ di|2 = 1 · 1 = 1

where | − | denotes the complex norm |a+ bi|2 = a2 + b2. In the condition that a, b, c, d ∈ Q,
since Q is closed under multplication (as a field), we know the product will also have rational
entries.

Solution 33. (A) A little related rates question with a twist. We begin with the formula
for the volume of a sphere, V = 4π/3 · r3. We then quickly stop, because that formula isn’t
going to help us for the particular problem. We need to write an equation that incorporates
the depth of water in the tank, so let’s take a step back.

According to various internet sources, it’s “fairly easy” to prove that the volume of water
in a spherical rank of radius R at height h is given by

V (h) = πRh2 − π

3
h3

Maybe you have this formula in your pocket, maybe not. The only way I can see about this
one is actually doing an integral. To derive this formula, we can use

V (h) =

∫ h

0

A(z) dz

where A(z) is the cross-sectional area of the sphere at height z. Luckily all the A(z) are
circles, so we just need to find the radius at height z. Drawing out what this looks like, in
2D, we obtain the following triangle4:

4GeoGebra again
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The radius is the last leg of the triangle with radius 5 (our case) and height 5 − h. We
therefore get r2 = 25− (5− h)2 = 10h− h2. The integral is therefore

V (h) =

∫ h

0

A(z) dz = π

∫ h

0

10z − z2 dz = π(5h2 − h3/3)

as promised above.
Now that we’ve got a formula, this problem shouldn’t be too difficult. We can take the

derivative (and since we’ve just integrated, that won’t be hard) to obtain

dV

dt
= π(10h− h2) · dh

dt

At h = 2, we can just plug everything in to obtain π(20− 4)(1/3) = 16π/3, which is (A).

Solution 34. (A) Let’s see if we can find some kind of pattern. In order to compose this
function with itself, it’ll be more convenient to write it as a single fraction:

f(x) = 1− 1

x
=

x− 1

x
=⇒ f

(
x− 1

x

)
= 1− x

x− 1
=

x− 1

x− 1
− x

x− 1
=

−1

x− 1

Let’s look at one more iteration...

f ◦3(x) = f

(
−1

x− 1

)
= 1− (−(x− 1)) = x

That’s fortunate for our computation. This implies that f ◦100(x) = f(f ◦99(x)) = f(x),
making the answer (A).

This is the first problem on the exam with an under 50% success rate and no wonder: it
takes forever.

Solution 35. (B) This problem requires some reinterpretation. We are invited by various
internet sources to think of this as a Riemann sum, as the idea of a partial sum like this
with n → ∞ does recall that. But how is this a Riemann sum?
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If we factor out the n2 everywhere, we equivalently have

an =
n∑

k=1

1

1 + (k/n)2
· 1
n
=

1

n

n∑
k=1

1

1 + (k/n)2

I think this is quite the leap, but I look forward to readers’ comments on the subject. Having
established this, set f(x) = 1/(1 + x2) and we see that this is the nth right Riemann sum of∫ 1

0

1

1 + x2
dx = arctan(x)

∣∣∣1
0
= arctan(1)− arctan(0) = π/4

As arctan(x) is integrable, we know the Riemann sum will converge to the true value, making
the answer (B).

Unsurprisingly, this question only had a 31% success rate.

Solution 36. (A) First, let’s diagnose what S could be. The only connected subsets of R
are intervals and singletons, and as S has more than one point we’re looking at an interval.
Since S is bounded, it must be of the form (a, b), [a, b), (a, b], or [a, b] for a < b ∈ R.
Let’s test our intuition on f(x) = x, a perfectly good continuous function. There’s no

reason the image of S needs to be closed, so that rules out Statement I. In the case that
S = (a, b), the image f(S) = (a, b) has no maximum value, since it’s an open set. That rules
out Statement II.

From general principles, we know that the continuous image of a connected subset is still
connected, which in our case translates to f(S) is an interval. But there’s no reason it needs
to be bounded. Consider f(x) = 1/x and S = (0, 1). Then f(S) = (1,∞), so there’s no
least upper bound for this set. That makes the answer (A).

This last paragraph might be a little confusing to your intuition. Here’s how the usual
argument goes for a continuous f(x) defined on all of R. Let S = (a, b), so that f(S) is
an interval of some kind. If we take the closure S = [a, b], it’s closed and bounded, i.e.,

compact. The continuous image of a compact set is compact, which makes f(S) a closed
and bounded interval, say [c, d]. Thus f(S) has an upper bound d which implies it has a
least upper bound. But since our f(x) didn’t have to be defined on the closure of S, this
line of reasoning doesn’t apply.

Solution 37. (C) This smells like a Lagrange multipliers problem to me. Let F (x, y, z) =
x2 + y2 + z2. Then extrema of f(x, y, z) subject to F (x, y, z) = 9 occur when ∇f = λ∇F
for some λ ∈ R. Computing these gradients,

∇f = ⟨1,−3, 2⟩, ∇F = ⟨2x, 2y, 2z⟩
which is going to be pretty easy to sort out. We have that x = 1/2λ, y = −3/2λ, and
z = 2/2λ. Plugging back into our constraint function will give us the answer, thus

(1/2λ)2 + (−3/2λ)2 + (2/2λ)2 = 9 =⇒ 1 + 9 + 4 = 36λ2 =⇒ λ =

√
14

6

This is a very good sign given how much
√
14 is present in the answer choices.

This gives us x = 3/
√
14, y = −9/

√
14, z = 6/

√
14, and plugging back in to f(x, y, z)

gives us (3 + 27 + 12)/
√
14, which sums to 42/

√
14 and gives us (C).

Solution 38. (D) Let’s think about this in terms of kernels and images. If v ∈ kerB, then
A(B(v)) = 0, so kerB ⊂ kerA ◦B. This means the null space of A ◦B is at least dimension
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5, getting us down to (D) and (E). In order to maximize the size of the null space, we need
to ensure that imB intersects maximally with kerA. As kerA has dimension 3 and we’re
working in R12, there’s enough wiggle room for imB ∩ kerA = kerA. That gives us a total
kernel of dimension 3 + 5 = 8, giving us (D).

To give a specific example here, let {ei} be a basis for R12. Suppose thatB is the orthogonal
projection onto e1, . . . , e7 and A is the orthogonal projection onto e4, . . . , e12. Then the total
composition is the projection onto e4, e5, e6, e7 with an 8-dimensional null space.

Solution 39. (E) Since this matrix is upper-triangular, its eigenvalues are the entries along
the diagonal. If any of the eigenvalues are zero, then the matrix cannot be invertible.
Therefore we have to avoid the situation where 1 + x = 0, 1 − x = 0, or 1 + xr = 0. That
gives us ±1,±i as bad values for x. We know that four values for x is the most the problem
allows, giving us (E).

Solution 40. (E) Maybe we can find some kind of pattern here. One line divides the plane
into 2 regions; two lines divides it into 4 regions; three could give us 8 regions, but only if
the all three intersect at some point, so it’s 7 regions. It’s not too difficult to also draw out
that four lines give us 11 regions, which hints at a pattern: the fourth line gives us 4 more
regions. If we just hope that this pattern holds, we will get 5 + 6 + 7 + 8 + 9 + 10 more
regions, for a total of 45 + 11 = 56 and answer (E). For the purposes of the GRE, that’s
where I would stop thinking about this problem.

For a more robust argument5, consider if we have N − 1 lines on the plane with none
parallel and no three intersecting as a single point. Adding the Nth line, it isn’t parallel to
any of the other ones, so there are N − 1 points of intersection. This gives N − 2 segments
and 2 rays which split existing regions, so that’s N more regions. More details (and pictures)
are available in the footnote.

Solution 41. (C) This should be a quick problem for those with linear algebraic facts in their
head, but we’ll go over them. Starting from the top, (A) is definitely false since not every

matrix is diagonalizable. For instance, consider

0 1 1
0 0 1
0 0 0

, which has only one eigenvalue

with eigenvector ⟨1, 0, 0⟩.
Since M has real entries, if it has any complex eigenvalues, they have to come in complex

conjugate pairs, which rules out (B). This follows because the eigenvalues are the roots of
the characteristic polynomial, which has real coefficients.

For this same reason, the characteristic polynomial has to admit at least one real root, as
M is 3-dimensional. Any odd degree polynomial has to have at least one real root by the
Intermediate Value Theorem, and that makes (C) necessarily true.

To rule out the rest: if we take M = I3 the identity matrix, it only has one eigenvalue
λ = 1, ruling out (D). This example still works for (E), as the orthogonal eigenbasis for M
is just e1, e2, e3 but there’s still only one eigenvalue. This completes the problem.

Solution 42. (A) We can translate this into a linear algebra problem; let u⃗ be the vector
connecting (1, 3, 2) to (3, 1, 2) and v⃗ the vector connecting (1, 3, 2) to (−2, 0, 4). That gives
u⃗ = ⟨2,−2, 0⟩ and v⃗ = ⟨−3,−3, 2⟩. Then as we probably learned in multivariable calculus
or linear algebra, the area of the parallelogram defined by u⃗ and v⃗ has area ∥u⃗ × v⃗∥, the

5See, e.g., https://mvtrinh.wordpress.com/2012/01/05/regions-in-the-plane/
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magnitude of the cross product. The triangle defined by u⃗ and v⃗ has half the area of the
parallelogram, so that would solve the problem.

Computing the cross product gives u⃗ × v⃗ = ⟨−4,−4,−12⟩, and its magnitude is
√
176 =

4
√
11. The area of the triangle is therefore 2

√
11, giving us (A).

Solution 43. (E) Looking at the answers, if we can eliminate Statement I we’ll be done
with the problem, so let’s start there first. xRx is easily verified, as (x− x)(x2 + 2) = 0 for
any x.

Statement II is also true; we know that xRy if x− y = 0 or if xy+2 = 0. x− y = 0 if and
only if y−x = 0 and xy+2 = 0 if and only if yx+2 = 0 (because multiplication commutes).

Statement III is testing transitivity, which isn’t as obvious. Suppose that xRy. Then in
one circumstance, x = y, so yRz if and only if xRz. In the other circumstance, we have
xy + 2 = 0. Now when yRz, we either have y = z or yz + 2 = 0. When y = z, then xRz
if and only if xRy, so there’s only one edge case to check. In the case that xy + 2 = 0 and
yz + 2 = 0, then we can solve y = −2/x and z = −2/y, which means that x = z and this
completes the problem.

Solution 44. (A) It feels like something curvy is probably the answer, so let’s try to rule
out (D). we know that one location for S is on the line connecting A and B; if the possible
points for S forms a line, then it has to be orthogonal to AB, otherwise the distance can’t
possibly be constant. But drawing out a triangle for this situation proves that it can’t work;
AS = 6 and SB = 4, but if we move S one mile to the right or left we have

√
37 and

√
25 = 5

which doesn’t work.
But it’s probably best to start with a systematic approach. Let A = (10, 0) and B = (0, 0)

on the plane, where S = (x, y) is a candidate point. We know the distance to B is
√
x2 + y2

and the distance to A is
√

(x− 10)2 + y2. Therefore we must solve√
x2 + y2 + 2 =

√
(x− 10)2 + y2 =⇒ x2 + y2 + 4

√
x2 + y2 + 4 = (x− 10)2 + y2

Sorting this out, we can nix the y2 and FOIL out the (x− 10)2 to obtain

x2 + 4
√

x2 + y2 + 4 = x2 − 20x+ 100 =⇒
√

x2 + y2 = −5x+ 24

Squaring both sides again is going to give something of the form y2 = Ax2 + Bx + C with
A = 24 > 0. This isn’t a circle or an ellipse, since x2 and y2 have positive coefficients on the
opposite sides of the equality. It’s also not a parabola, since y is squared. The last option is
(A), a branch of a hyperbola.

Solution 45. (E) Only (D) and (E) look complicated enough to be correct, but hard to tell
what’s really going on here. I’ll admit to being flummoxed and going to Math StackExchange
for help6.

Here’s the idea: we know that u = u(x, y) = u(f(u, v), g(u, v)). Take the derivative with
respect to u and follow along the chain rule:

∂u

∂u
= 1 =

∂u

∂x

∂f

∂u
+

∂u

∂y

∂g

∂u

∂u

∂v
= 0 =

∂u

∂x

∂f

∂v
+

∂u

∂y

∂g

∂v

6See here
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We need to pull out that ∂u/∂x from this mess. The only term that we know isn’t in a
correct answer is ∂u/∂y, which the bottom equation lets us solve for:

∂u

∂y
= −(∂u/∂x)(∂f/∂v)

∂g/∂v

Plugging that back into the first equation, we can solve for ∂u/∂x.

1 =
∂u

∂x

∂f

∂u
+

∂u

∂y

∂g

∂u
=

∂u

∂x

∂f

∂u
− ∂u

∂x

(
(∂g/∂u)(∂f/∂v)

∂g/∂v

)
=

∂u

∂x

(
(∂f/∂u)(∂g/∂v)− (∂g/∂y)(∂f/∂v)

∂g/∂v

)
when we include the ∂f/∂u term into the fraction by mutiplying by the denominator. Flip-
ping this fraction around gives us (E).

The quicker way to do it is the following trick, which summarizes all the terrible stuff
above into Jacobians. Let F (u, v) = (f(u, v), g(u, v)) and let G(x, y) = (u(x, y), v(x, y)).
Then F and G are inverse functions, so their Jacobians must also be inverses. Therefore
given the relationship J−1

F = JG, that is,(
∂f/∂u ∂f/∂v
∂g/∂u ∂g/∂v

)−1

=

(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
we can symbolically invert the lefthand matrix to get the same conclusion via(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
Solution 46. (E) We’re given a nice linear differential equation, particularly nice because it
only has real-valued coefficients. The general method to solve this equations goes as follows:
first, move all the non-y terms to the righthand side of the equals sign, which ETS has
helpfully done for us.

We’ll first solve the homogeneous version of this equation, y′′ + 2y′ + 3y = 0. Pretending
that derivatives are a variable, we have a quadratic equation w2 + 2w + 3 = 0 (where y is
the zeroeth derivative so we get w0). Solving for the roots of this polynomial, they’re not
super pleasant:

w =
−2±

√
4− 12

2
=⇒ w = −1± i

√
2

The general solution for this differential equation has the form Cewt for the roots w, so we
get

C1e
(−1+i

√
2)t + C2e

(−1−i
√
2)t = y(t)

Before we work on the nonhomogeneous part of this problem, we’ve got a bit of a problem:
none of the answers have an i in them.

Not to worry, though: recall Euler’s formula, which tells us eiθ = cos(θ) + i sin(θ). If we
rearrange the above formula a little bit to group together like terms, we obtain

C1e
(−1+i

√
2)t + C2e

(−1−i
√
2)t = e−t

(
C1e

i
√
2t + C2e

−i
√
2t
)
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Using Euler’s formula, we can simplify the content of the parantheses:

C1e
i
√
2t + C2e

−i
√
2t = C1(cos(

√
2t) + i sin(

√
2t)) + C2(cos(−

√
2t) + i sin(−

√
2t))

= (C1 + C2) cos(
√
2t) + (C1 − C2)i sin(

√
2t)

Since we know our y(t) is real-vlaued, we must have C1 = C2 so that the i part disappears,
which leaves us (effectively) with a single constant C cos(

√
2t). Putting our original term

back in, we have Ce−t cos(
√
2t).

That actually leaves something out, however. If we assume that Ci ∈ R, this is the only
choice, but what if Ci ∈ C? Then it could be the case that (C1 − C2)i sin(

√
t) actually has

a real coefficient, but that only works if Ci = bi · i for both constants. If these constants are
indeed purely imaginary, then C1+C2 is going to be non-real, so we have to have C1 = −C2.
That gives us a second solution of C sin(

√
2t) which, when put together, gives us our general

solution:
C1e

−t cos(
√
2t) + C2e

−t sin(
√
2t) = y(t)

If you want a simpler reason why we need both a cosine and a sine solution, consider this:
they’re both equally good solutions to y′′ = −y, and the fact that we only ended up with
cosine the first time was an R-bias that we tried to explain away in the above paragraph.

We still have to solve the nonhomogeneous part of this problem, but we can see the
answer is going to be (D) or (E). Answer (A) exists if you screwed up the roots of the
original polynomial and (B) and (C) if you forgot the e−t part.

So how to we incorporate that t part? Well it’s not just adding t in there, like (D) implies,
so the answer is going to be (E). All we’re looking for is any particular solution to the
differential equation y′′ + 2y′ + 3y = t. If we let y(t) = t, then we have y′′(t) = 0, y′(t) = 1.
So plugging in we get 0 + 2 + 3t ̸= t.

For y(t) = t/3 − 2/9, which I’ll admit looks fishy if you don’t know what you’re looking
for, we get y′′(t) = 0, y′(t) = 1/3. Plugging in gives us

0 + 2(1/3) + 3(t/3− 2/9) = 0 + 2/3 + t− 2/3 = t

as required. That makes the answer (E).

Solution 47. (C) This is a highly suspicious line integral, to be presented like this. Indeed,
it almost looks like we’re taking the integral of something’s gradient, as I notice that y3 is
the x-partial derivative of xy3, whose y-partial derivative is 3xy2 in the other term.

Indeed, what we’ve got here is ∇F (x, y) · ⟨dx, dy⟩ for F (x, y) = xy3 + 5x2/2 + 4y2 + C.
This means that the vector field along which we’re integrating is path-independent, so we
don’t actually have to do a line integral; it just depends on the endpoints.∫

C

(5x+ y3) dx+ (3xy2 + 8y) dy = F (0, 3)− F (2, 0) = 36− 10 = 26

That gives us (C).

Solution 48. (B) We note that f(x, y) hasn’t been assumed to even be continuous before
getting into this problem.

For Statement I, let’s just take a piecewise defined f(x, y) which is a plane on each piece,
say

f(x, y) =

{
1 x > 0

−1 x ≤ 0
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That gets around that particular issue.
For Statement II, since the partial derivatives exist, we at least have to be continuous. If

they’re constant, then they’re in particular continuous, so f(x, y) is actually a differentiable
function. This means that, not only does f(x, y) look locally line a plane, it actually has to
be a plane. There’s probably a more rigorous argument here, but as we’re about to see it
doesn’t matter.

So that leaves Statement III. There doesn’t seem to be any reason this should be the case.
Consider f(x, y) = x2 + y2, which is definitely not a plane. Then its mixed partials are
identically zero, as no term has both x and y in it. This rules out III and makes (B) the
answer.

Solution 49. (E) This is a clear case for the Residue Theorem. We have our positively-
oriented closed curve C, and the theorem tells us

∮
C

(
sin z

z − 1

)2

dz = 2πi ·
∑

Res(f(z), ak)

where ak are the poles of the function f(z) = (sin z/(z − 1))2 on the interior of C and Res
denotes the residue at that pole.

So where are the poles? Only when z = 1, which is (happily enough) the dead center of
the circle C. If z = 1 is a simple pole, then its residue is given by

Res(f(z), 1) = lim
z→1

(z − 1) · sin2(z)

(z − 1)2
= lim

z→1

sin2 z

z − 1

which unfortunately does not exist. This is because z = 1 isn’t actually a simple pole; it has
order 2, which is evidenced by the (z − 1)2 in the denominator. The residue computation
for a pole of order n at z = c is given by

Res(f(z), c) =
1

(n− 1)!
lim
z→c

dn−1

dzn−1
(z − c)nf(z))

So for us this becomes

Res(f(z), 1) =
1

1!
lim
z→1

d

dz

(
(z − 1)2

sin2 z

(z − 1)2

)
= lim

z→1

d

dz
sin2 z = lim

z→1
2 sin z cos z

This makes the answer 2 sin(1) cos(1), which isn’t an option. Hmm. But when we remember
our double angle formulas, we recall sin(2θ) = 2 sin θ cos θ, which allows us to obtain sin 2 as
the final answer, which is (E).

Solution 50. (E) Well, I surely don’t want to integrate this with respect to y first, as it’s not
possible (see Problem 28). So let’s graph out this region to reverse the order of integration.
We have a nice little triangle here, with 0 ≤ x ≤ 1 and 2x ≤ y ≤ 2. This gives 0 ≤ y ≤ 2
and now x is bounded by 0 on the left and y/2 on the right.
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Hence we can equivalently compute∫ 2

0

∫ y/2

0

ey
2

dx dy =

∫ 2

0

(
xey

2
) ∣∣∣y/2

0
dy =

∫ 2

0

yey
2

2
dy

Now we can u-substitute for u = y2, du = 2y dy and compute∫ 2

0

yey
2

2
dy =

∫ 4

0

eu

4
dy =

eu

4

∣∣∣4
0
=

e4 − 1

4

Giving us (E).

Solution 51. (C) Let’s run through this a bit to see what’s going on. We start with A = 2,
B = 1, C = 0. Looking at the main loop, the main step (with the arrows going to the right)
is testing whether we’ve hit C = A or C > A; if we hit C = A, we print and then increment
A; otherwise we don’t print and then increment A. If we’re still in C < A then we increase
C by B and try again, but this time B is incremented by 2.

So the possible values for C are actually the same every loop; we start at C = 1 (within
the main testing loop), then C = 1+ 3, then C = 1+ 3+ 5, as B keeps going up by 2 every
loop. C is a sum of successive odd numbers, which means C always has the form C = n2.
We only print when A = C, so that means we can only print a perfect square, making the
answer (C).

Solution 52. (E) Recall that in a permutation/symmetric group, the conjugacy classes are
exactly the cycle decomposition types. Since we’re working with 4 elements, we can have 1-
cycles, 2-cycles, 3-cycles, 4-cycles, and the ever mysterious 2-2-cycles, e.g., (1 2)(3 4). That’s
5 types, so it’s (E).

This problem only had a 20% success rate, which I take to mean that people haven’t
memorized this pretty useful fact about symmetric groups. Commit it to memory and this
problem is free; try to work it out on the fly and you’ll waste too much time.

Solution 53. (D) These are all six possible dot products between the four vectors we’ve
chosen. Let’s interpret the statements in terms of directionality; a dot product is negative
if the vectors are pointing in opposite directions, zero if they’re orthogonal, and positive if
they’re in the same direction.
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Statement I is false; we have four vectors in R2, and the most “away from each other”
these four can be is along the cardinal directions, but then all these dot products would be
zero. Two of these vectors have to be going in the same direction no matter what we do.

Now it seems to me that Statements II and III are equivalent. Suppose we’re in the
situation of Statement II, and that v1 appears in two dot products that are negative. Then
replacing v1 7→ −v1 means that these two dot products are now positive and the other four
remain zero. Since “none of the above” is not an answer choice, we have to conclude that II
and III are true and the answer is (D).

In fact, the arrangement that solves this is precisely letting vi run along the cardinal
directions as we wrote in I. North/South and East/West give negative dot products, and the
other four combinations are zero. To get an arrangement like III, just take North, North,
East, West (or something similar).

Solution 54. (E) This doesn’t look like a fun differential equation to solve; certainly it’s
not as straightforward as Problem 46 above. If we try to solve the homogeneous equation,
we get a solve using separation of variables:

y′ + 2yt = 0 =⇒ dy

y
= −2t dt =⇒ log y(t) = −t2 + C =⇒ y(t) = Ce−t2

Certainly a good sign, as this looks pretty similar to the nonhomogeneous part of our equa-
tion.

If we want to find a particular solution to give us e−t2 sin t, we’re going to have to start
with something like y(t) = De−t2 cos t so its derivative involves a sin t. If we just make this
guess, we have

y′(t) = −2t ·De−t2 cos t− Ce−t2 sin t = −2ty(t)−De−t2 sin t

This means that y′ + 2yt = −De−t2 sin t, and for us that makes D = −1. Therefore the
general solution to our differential equation is

y(t) = Ce−t2 − e−t2 cos t = e−t2(C − cos t)

We can now solve the problem. Since y(0) = 0, this means C = cos 0 = 1. Therefore

y(π) = e−π2
(1 + 1) = 2e−π2

, which thankfully is (E).

Solution 55. (B) Recall how we compute the standard deviation: it’s given by taking the
sum of the squares of the deviations from the mean, multiplying by 1/N for the number of
observations N , then taking the square root:

σ =

√√√√ 1

N

N∑
i=1

(x− xi)2

If we quadruple the number of observations, then we should
√
1/4 = 1/2 the standard

deviation. That gives us (B).

Solution 56. (E) A classic problem on idempotent rings, i.e., rings where every element is
its own square. These can’t be very complicated, as you can guess. Let’s review:

For Statement I: (a+1)2. Foiling this out gives us a2+ a+ a+1, and this also must equal
a + 1. This implies that a2 + a = 0, and since a2 = a, a + a = 0. Otherwise put, R has
characteristic 2, i.e., the canonical homomorphism Z → R has kernel 2Z.
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For Statement II: this asserts that every element is nilpotent, which can’t be true since
1 ∈ R.

For Statement III: to prove that R is commutative (which it is), consider the product
(a + b)2. Foiling this out, we get a2 + ab + ba + b2. We know that (a + b)2 = a + b and
a2 = a, b2 = b, so putting all this together we obtain ab+ ba = 0. That lets us conclude that
ab = −ba; but by Statement I, every element is its own additive inverse, so −ba = ba and
we conclude that ab = ba. That makes the answer (E).

Solution 57. (B) Looks like we’re going to have to symbolically integrate by parts here
and look for a pattern. If we recall how to integrate log x, we use the choice u = log x and
dv = dx. Then ∫

log x dx = x log x−
∫

x

x
dx = x log x− x

For In, we should be able to use a similar trick. Let u = (log x)n and dv = dx. Then
du = n(log x)n−1/x dx and v = x. We therefore obtain∫

(log x)n dx = x(log x)n −
∫

n(log x)n−1 dx = x(log x)n − n · In−1(x)

Looking closely at the signs in the answers, this gives us (B).

Solution 58. (A) This problem has the form of a “stars and bars” partition. Imagine that
we line up all 25 trucks in a row, and we need to divide them between 5 cities. That means
putting in 4 bars between trucks so that the first clump goes to City 1, the second to City
2, etc. This means we have 29 “slots” to fill, of which 4 have to be the dividing bars (and

the remaining 25 are trucks). That makes the base case of this problem

(
29

4

)
.

Now, we’ve subtracted off

(
24

4

)
for the problem at hand. We can take the situations

given and determine which of the ruled out possibilities would give us these combinations. If
we continue thinking in stars and bars, however, one might recall that the number of positive

partitions of 25 trucks into 5 cities would be

(
24

4

)
. This follows because, as we imagine

lining up the 25 trucks in a row, we now need to place 4 bars strictly between each of the
25 trucks, into 24 slots. We also can’t but bars next to each other, because that would give
a partition with zero elements.

Looking at the answers, (A) is this situation exactly. We have eliminated all arrangements
such that every city receives at least one truck, therefore at least one city must have zero
trucks. We could go through and analyze the remainder ((B) is just the complement of (A)),
it’s just a test of how much time you’re willing to waste on incorrect answers.

Perhaps unsurprisingly this problem also has a mere 21% success rate. Stars and bars
doesn’t come up outside of a discrete math or combinatorics class, and it’s worth remem-
bering along with things like the pigeonhole principle for just such an occasion.

Solution 59. (C) Recall that the integers invertible modulo n are represented by integers
which are coprime to n, which in our case gives us U30 = {1, 7, 11, 13, 17, 19, 23, 29}, most
of the primes under 30 (since 30 − 2 · 3 · 5 is the product of the first three primes). It’s an
abelian group with 8 elements, which doesn’t give us a whole lot of choices for its structure,
but we don’t even need to figure that out to solve the problem.
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We’re given information about φ(7) and φ(11). We know that

φ(7 · 11) = φ(7) · φ(11) = φ(7) · 1 = 7

so that gives us φ(77) = 7. 77 is equivalent to 17 modulo 30, making (C) the answer.

Solution 60. (B) When given an LU -decomposition of a matrix, we can solve the problem

in two steps. First, let y⃗ ∈ R4 such that Ly⃗ = b⃗. Specifically, that means
1 0 0 0
1 1 0 0
1 0 1 0
1 −1 0 1



a
b
c
d

 =


1
0
1
0


The triangularity of the matrix L is going to make this an easy system of equations. We
just work from top to bottom: we have a+ 0+ 0+ 0 = 1, so a = 1. Then a+ b+ 0+ 0 = 0,
so b = −1. Third, a+ 0 + c+ 0 = 1, so c = 0. Finally, a− b+ 0 + d = 0, so d = −2.
Not too bad, we can pretty much turn our brain off and chug when it comes to this sort

of solution. Now we have to solve for Ux⃗ = y⃗, i.e.,
1 0 1 0
0 1 1 0
0 0 1 2
0 0 0 2



α
β
γ
δ

 =


1
−1
0
−2


Unfortunately we can’t go straight for α, the answer, and need to go from the bottom up
instead. 2δ = −2, so δ = −1. γ + 2δ = 0, so γ = 2. β + γ = −1, so β = −3. Finally,
α + γ = 1, so α = −1. You could skip computing β if you wanted.

Solution 61. (E) We can solve this if we can recall/recompute Φ10(z), the 10th cyclotomic
polynomial, which is the minimal polynomial for primitive 10th roots of unity. We know it
has to have degree 4 = φ(10), Euler’s totient function of 10, because 1, 3, 7, 9 are the the
only coprime numbers less than 10. We also know that it’s a divisor of z10 − 1 = 0, as the
minimal polynomial has to divide any polynomial with the correct roots.

Okay, from this, we can start factoring z10 − 1 = (z5 − 1)(z5 + 1). The lefthand term is
going to take care of all the 5th roots of unity, so we know that Φ10(z) is a factor of z5 + 1.
We can keep going a little further, as z = −1 is a root of the righthand term, to obtain

z5 + 1 = (z + 1)(z4 − z3 + z2 − z + 1)

This can be accomplished via synthetic division or remembering some of your divisibility
tricks. This gives us our required polynomial.

For any polynomial, we know that the sum of the roots is −1 times the coefficient of z
and the product of the roots is (−1)d times the constant term, where d is the degree. That
makes both S = 1 and P = 1, giving us (E).

This was the least correctly answered problem on the test, with only 13% correct answers.
No surprise; finding these cyclotomic polynomials is pretty annoying.

Solution 62. (B) Recall that a metric space is complete if every Cauchy sequence of points
has a limit that is in that metric space. Recall that a sequence {an} is Cauchy if for all
ε > 0, there exists N ∈ N such that |an − am| < ε for all n,m > N . For example, Q under
the standard metric is not complete, as there are plenty of sequences that have no limit, e.g.,
the truncated decimal expansion of an irrational number, say 1, 1.4, 1.41, 1.414, · · · →

√
2.
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(A) is complete, since that’s just R in the standard metric. (E) looks a bit weird, so
maybe that’s our culprit? What even are the Cauchy sequences in that metric? Actually, a
sequence here is Cauchy if and only if it’s eventually constant, therefore has a limit in the
metric space.

Under what circumstance could we have a Cauchy sequence where the metric is getting
closer together but the “numbers” aren’t? If we look at (D), suppose we have a Cauchy
sequence {an}. Let ε > 0 and let N ∈ N be the guaranteed number. Then we have the
following manipulation:

| 3
√
an − 3

√
am| · | 3

√
a2n +

3
√
anam + 3

√
a2m| = |an − am|

Because the sequence is Cauchy, it’s in particular bounded; this means that complicated
term above has some upper bound M for all n,m ∈ N. Therefore with the replacement of ε
by ε/M , we can prove that the sequence {an} is also Cauchy in the standard metric on R,
and so it has a limit; this must be the same limit as the (B) metric. A similar argument also
proves (C) is complete.

This means the answer has to be (B), so what gives? The problem lies in the fact that
arctanx gets very small even as x gets very large, something that’s missing in all the other
examples. Consider the sequence {an = n}. Then as we know that lim

n→∞
arctan(n) = π/2,

there exists N ∈ N such that | arctan(n)−π/2| < ε for all n > N . By the triangle inequality,
for all n,m > N ,

| arctan(n)− arctan(m)| ≤ | arctan(n)− π/2|+ |π/2− arctan(m)| < 2ε

So this sequence is indeed Cauchy, but there’s no limit; if we had a mysterious point at
∞, maybe, but R certainly doesn’t. In fact any “unbounded” sequence in R that’s either
positive or negative is going to be Cauchy in the (B) metric, but won’t have a limit.

Solution 63. (A) There’s a devious reduction trick here that will help us out. Set In to be
the integral we’re trying to solve. Consider the difference

In − In−2 =

∫ π

0

sin(nx)− sin((n− 2)x)

sinx
dx

Now there’s a trigonometric identity7 which says that

sinα− sin β = 2 sin

(
α− β

2

)
cos

(
α + β

2

)
So what’s that mean for us? Applying that identity to the numerator,

In − In−2 =

∫ π

0

2 sinx cos((n− 1)x)

sinx
dx = 2

∫ π

0

cos((n− 1)x) dx = 0

So as long as n − 2 ≥ 0, this identity holds and thus we can reduce I100 = I2. Computing
that one is easy: recall sin(2x) = 2 sinx cosx, so that∫ π

0

sin(2x)

sinx
dx =

∫ π

0

2 cosx dx = 2 sin x
∣∣∣π
0
= 0

which gives us (A).

7See https://www.liverpool.ac.uk/ maryrees/homepagemath191/trigid.pdf
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Solution 64. (C) This smells a lot like L’Hôpital’s rule given the setup to the problem, so
let’s use that as a jumping off point.

For Statement I: if we try to take the limit, we get

lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
=

limx→0 f
′(x)

limx→0 g′(x)

where this last equality follows since f ′(x), g′(x) are continuously differentiable. Since the
denominator is nonzero, this gives us a value for the limit and we prove I is true.

For Statement II, we’re using the same method of proof, but we might hit a wrinkle due to
the increased complexity. L’Hôpital’s rule still applies since f 2(0)+f(0) = 2g(0)−g3(0) = 0

lim
x→0

f 2 + f

2g − g3
= lim

x→0

2f · f ′ + f ′

2g′ − 3g2 · g′
=

2f(0) · f ′(0) + f ′(0)

2g′(0)− 3g2(0) · g′(0)
=

f ′(0)

2g′(0)

Because most of these terms are zero, we can conclude that this limit still exists since
2g′(0) ̸= 0.
For Statement III, we’re now asking to extend to a differentiable function. If we could

rig a situation where f(x)/g(x) = |x|, we’d be in great shape. So let’s try something
straightforward: f(x) = x · |x| and g(x) = x. Is f(x) continuously differentiable? It’s
definitely continuous, and we can write it piecewise as

f(x) =

{
−x2 x ≤ 0

x2 x > 0

Then on the branches, we have f ′(x) = −2x for x ≤ 0 and f ′(x) = 2x for x > 0, which luckily
agree at x = 0. This gives us exactly the situation of our dreams, and we can conclude III
is false and the answer is (C).8

Solution 65. (E) We’re looking for a conditional probability here: the probability that the
test is correct given that it is positive. Let A denote the event that the man has the disease
and let B denote the event that the test is positive; we want P (A|B).

Bayes’ theorem tells us that if we can find P (A), P (B), and P (B|A) we can compute
P (A|B). The probably that the man has the disease P (A) = 5% as the problem states.
P (B|A) is also given; if a man has the disease, the test is right 24% of the time.

The last piece is P (B), the odds that the test is positive. We can compute P (B) as
the sum P (B ∩ A) + P (B ∩ ¬A). The probability of the man being positive and the test
being correct P (B ∩ A) = P (B) · P (B|A) = (0.05)(0.24) = 0.012. For the other piece,
P (B ∩ ¬A) = P (B) · P (B|¬A) = (0.02)(0.95) = 0.019.

Putting all this together,

P (A|B) =
P (B|A)P (A)

P (B)
=

0.24 · 0.05
0.012 + 0.019

=
12

31

Well that’s more than 29% since 12 is more than a third of 31, making the answer 39%. (E)
is therefore the answer.

This is why it’s important for doctors to study Bayes’ theorem!

Solution 66. (B) This is probably more of a number theory problem than a topology one,
but you need both to get it right. Let’s try to figure out if the complement of any of the
listed sets is actually open to get started.

8Sanity checked at Math StackExchange
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Let UA denote the complement of set (A). Then we know that n2 ∈ UA since it’s everything
but n. But then n2 ∈ Uk for some k, which means n2 | k and so n | k too. This means that
UA cannot be open.
For (B), let UB denote its complement. Suppose that m ∈ UB is some non-multiple of n.

Then we need to show that Um ⊂ UB. But this is immediate; if some divisor t | m were a
multiple of n, then writing t ·d = m would imply that m is a multiple of n as well. Therefore
we can conclude that UB is open, and so this set is closed. It may not be minimal, but it’s
closed.

For (C), this is an open set, so the question must be asked if the open sets are also closed.
The complement Vk of a set Uk must contain all the points ≥ k+1, since they cannot divide
k. This implies that 2k ∈ Vk. But then the open neighbourhood U2k ⊂ Vk, which implies all
the divisors of 2k ∈ Vk, including k itself, which means Vk is not the complement. Thus the
open sets are not closed and this can’t be right.

(D) and (E) might look complicated, but they don’t even contain {n} for all n ≥ 2! So
we can rule them out immediately and conclude that the answer is (B).


